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Reflexion of Kelvin waves at the open end of a 
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The problem of the reflexion of tides in an enclosed sea such as the North Sea at  
a point at which it either enters the ocean or its width suddenly increases is con- 
sidered by investigating the reflexion of a Kelvin wave a t  the open end of a 
rotating uniform semi-infinite channel. 

It is shown that for a given channel, if the wave period is less than a pendulum 
day, then, according to the linearized theory of long waves in a rotating system, 
the reflexion coefficient increases with the angular velocity of rotation. It is also 
shown that there is a resonance effect for certain critical channel widths, namely, 
those a t  which extra modes within the channel become possible. 

1. Introduction 
The tidal chart for the North Sea obtained by Proudman & Doodson (1924) 

shows very clearly that as far as the tides are concerned the North Sea may be 
divided into two main regions, namely the Flemish Bight and the remaining area 
to the north. Taylor (1920) took as a model of the second of these regions a semi- 
infinite canal closed at one end and considered the reflexion of a Kelvin wave 
at the closed end. 

The situation in the Flemish Bight is more complex. First, the tide down the 
English coast is not totally reflected as in Taylor’s model but partly transmitted 
around the Norfolk coast. A treatment of this problem has recently been given 
by Packham & Williams (1968) who have investigated the transmission of a 
Kelvin wave around a sharp bend in a coastline in the absence of any other 
boundaries. In  considering the reflexion of this wave we may again use Taylor’s 
model. This wave is, however, augmented by the tide from the English Channel 
along the French coast. A certain amount of this will be transmitted into the 
northern portion of the North Sea, but due to the sudden increase in the width 
of the channel some will also be reflected. One purpose of the present paper is 
to estimate this reflexion by taking as a model a semi-infinite open-ended 
channel. 

The theory is, of course, equally applicable to the northern extremity of the 
North Sea although the effect is normally much smaller due to the relatively 
small amplitude of the tidal wave along the Norwegian coast. The effect could, 
however, be significant when the tides are augmented by a surge out of the 
North Sea due to a depression over the northern approaches. 

21 Fluid Mech. 39 



322 B. A .  Packham 

The solution for the particular case of no rotation, which corresponds to that 
of radiation from a pair of parallel semi-infinite plates, is given in Noble (1958, 
p. 105). 

2. Formulation of the problem 
Consider a plane horizontal sheet of water of uniform undisturbed depth h 

rotating about a vertical axis with angular velocity & f. Let x and y be rectangular 
co-ordinates in the horizontal plane and t the time. We shall assume that the 
motion is governed by the linearized long wave equations 

a U  afl 
at 
---fv = -&, 

where (u, v) are the ve1ocity:components in the (x, y) directions, fl  is the elevation 
of the surface above its mean level and g is the acceleration of gravity. We look 
for solutions periodic in the time t ,  and, assuming a time dependence e-iwt, we have 

and (V2+k2)6 = 0, (2.6) 

where V2 is the two-dimensional Laplacian and k2c2 = w2- f 7 c2 = 9h. 
The boundary condition at the barriers, which we take to be 

y = + b ,  - o o < x < O ,  

is that the normal velocity v is zero, i.e. 

As incident wave we take a Kelvin wave moving from left to right in the duct 

It will be convenient to put f = kcsinhp, w = kccoshB, and to write 
fl  = exp [(iwx- fy)/c]. (2.8) 

f l =  $* = $+exp[k(ixcoshp-ysinhp)]. (2.9) 

given by 

The problem is thus to find a solution #t of (2.6) subject to the following 
conditions: 

a$ (2.10) a5k --itanhp-t=O for y = f b  ( - c o < x < O ) ,  
aY ax 

aQt-itanhp- a4 is continuous across y = b (-a < x < 00)) (2.11) 
a Y  ax 

and q$ is continuous across y = ? b, x > 0. (2.12) 
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3. Derivation of basic equations 

rotation we introduce the Fourier transforms 
Following the method and notation used by Noble (1958) for the case of no 

and similarly for q 5 ( q  y). 
From (2.6) 

d y 2 - Y  2@ t -  - 0, y =  (a  - k2)*, 

and, since the incident wave is a solution of (2.6), @(a,y) satisfies the same 
equation. If therefore, we set w = w, + iw,, where w, > 0, w, > 0 then k = k,  + ik,, 
k ,  > 0, so that since only radiated waves exist for IyI 2 b and 4 consists of re- 
flected waves which are attenuated as x + - 00, it follows that for - k, < r < k,, 

Qt = A e-yy  (y 2 b) ,  

at = Deyv (y Q -b) ,  
and @ = Be-yY+Ceyv  (Iyl < b). 

Hence for - k, < r < k,, 

at+( + b + 0) + Of-( k b k 0) = ( A ,  D) e-yb, 

@+( + b T 0)  + @-( + b T 0) = B e F y b +  Ce*yb ,  

@;+( & b f 0) + a:-( ? b k 0) = T y(A,  D )  e-yb, 

(3.4) 

(3.5) 

(3-6) 

and @ ; ( f b ~ o ) + @ I _ (   TO) = - y ( B e F y b - C e * @ ) ,  (3.7) 
where in (A ,  D) the first element refers to the upper sign and the second to the 
lower. 

Bearing in mind that for the incident wave (2.8) the normal velocity on 
y = +b,  -00 c x < 00 is zero, it follows from (2.10) and (2.11) that 

@;+( + b  f 0) -atanhP@,+( f b k 0) = @;( + b T O)-atanhP@+( k b T 0) 

= Y+( k b) ,  say, (3.9) 
@;-( f b +  O)-atanhPQf-( + b f 0)  = 0 (3.10) 

and @L( k b  T O)-atanhP@-( + b ~  0) = 0. (3.11) 

Similarly from (2.12) 

(3.12) 

From (3.4), (3.6), (3.9) and (3.10) (or alternatively (3.5), (3.7), (3.9) and (3.11)) 
it  then easily follows that 

Y+( f b )  = T (y  + atanhp)  ( A ,  D )  e-yb 

= (y - a tanhp) Ce*yb - ( y  + a tanh/3)B e F y b .  (3.13) 
21-2 
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If now we write 

2F-( f b) = @t-( f b f 0) - @-( f b T O ) ,  (3.14) 

(x;,q.) = ~ + ( b ) S ~ + ( - b ) ,  (3.15) 

(S, D-) = 2;"_(b) f F (  - b), (3.16) 

then from (3.4), (3.5) and (3.12) 

y eyb 
- (" B, y f a tanhp'  (3.17) 

i exp [ k kb sinh /3] 
'-( ' b, + 24(27r) (a + k coshp) - - 

so that 
y e y b  

(y2-a2tanh2P) {(y + a tanhp) B T (y - a tanhp) c> ( D - , S )  = If: 

i sinh + (kbsinhp), (3.18) - J(27r) (a + k coshp) cosh 
and from (3.13) 

Hence 
(S;, 0;) = ( eyb  f e-yb)  {( y - a tanhp) C T (y + a tanhp) B}. 

__ (1 f e--2@) 

(3.19) 

(y2-a2tanh2P) 

Y 
(s:,D;) = - 

(kb sinh 4)  , i sinh 
,,/( 27r) (a  + k cosh p)  cosh (D-' '-) 

or since y2- a2 tanh2P = (a,- k2 cosh2P)/coshZP, 

cosh2 /3 
(s; ,D;)  = - 

(D-' '-) i sinh (kb sinh p)) . 
J(2n) (a + k coshp) cosh (3.20) 

These two equations are of Wiener-Hopf type and are soluble for (S;, 0;) in 
the normal way using known factorizations (cf. Heins 1948 and Noble 1958). 

4. Solution of basic equations 
Employing Noble's notation we suppose that we may write 

1 + e-2yb 

2 
____ = e-yb cosh yb = K(a)  = K+(a) K-(a), (4.2) and 

where K,, L+ are regular in r > - k,, K-, L- are regular in r < k,, and IK-1, IK+I 
are asymptotic to constants, and IL-1, IL+I are asymptotic to la]-* in appro- 
priate half-planes. Explicit factorizations and deductions from them are given 
in some detail by Noble (1958) and we will therefore merely quote the appro- 
priate formulae as they are required. In  particular we note that 

and 
K+( -a) = K-(a), 
L+( - a)  = L-(a). 

(4.3) 

(4.4) 
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Taking the upper sign in (3.20) the equation may be written in the form 

S; (a + k)& 2 ,/( 2k) sinh (kb sinh p)  K-( - k Gosh p) 
J(27r) coshpcosh +P(a + k coshp) (a + k cosh p) K+(a) - 

- 2 ( a  - k Gosh/?) K-(a) D- 
(a - k)+ COSh2 /3 

2i sinh (kb sinhp) 
= -  

+ J( 27r) cosh2 p(cc + k coshp) 

The left-hand side is regular in T > - k2 and the right-hand side is regular in 
T < k,, and each term tends to zero as a+co in the appropriate half-plane. 
Hence, by the usual arguments based on Liouville's theorem, each side of the 
equation is zero and 

2 J(2k)sinh(kbsinhp)K-( -kcoshp) 
J( 27r) Gosh p cosh +P(a + k)* sl, = K+(a), 

or, using (4 .3) ,  
2 , / ( 2 k )  sinh (kbsinhfi)K+(kcoshp) K+(a) 

(a+k)* '  
s; = 

,/( 2n) cosh p cosh $,4 

Similarly, taking the lower sign in (3.20) the equation may be written in the form 

0: i4bk cosh (kb sinhp) L-( - k coshp) 
J(2n) coshp(a + k coshp) (a+ kcoshp) L+(a)- 

2b(a - k coshp) i2b cosh (kb sinhp) =---- 
Gosh2 ,8 L-(a)s--J(27r) cosh2P(a +kcoshp) 

x {(a-kcoshp)L-(a)+2k~0~h/3.L-(  -kcosh/3)}. (4.7) 

Again, by the usual arguments, each side of the equation is zero, and therefore 

i4bkcosh (kbsinhP)L-( - kcoshp) 
D; = ,/( 2n) cosh p L+(a), 

0; = 1/( 27r) cosh p L+(a). 

or using (4 .4)  
i4bk cosh (kb sinhp) L+(k coshp) 

5. The reflected wave 
In  order to determine the reflected wave we require q5 in the region 

IyI < b, 2 < 0. 

Now for lyl < b, we have from (3 .3)  that 

@(a, y) = B e-yv + C eyv, 

where from (3 .13)  and (3 .15) ,  B and C are given by 

(y - a tanh p)  C e*yb - (y  +a tanhp) B ek@ = $(S\ k D\), 

or 
1 

(B' = 4 ( y  5 atanhp)  
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Hence 

In the region z < 0 we can close the contour in the upper half-plane. The 
singularities of @(a, y) in the upper half-plane are a simple pole at a = k coshp, 
which gives a reflected Kelvin wave, and the zeros of cosh yb and sinh yb/(yb). 
If we let k2 +- 0 then for the case 0 < 2kb < rr all the zeros of cosh yy and 
sinh yb/(yb) are imaginary and give rise t o  waves which are propagated to the 
left and tend to zero exponentially as z + - 00. We will restrict our investigation 
to the calculation of the amplitude of the reflected Kelvin wave for this case 
which includes the most interesting physical problems. 

Now it is easily seen from (5.1) that the contribution to (5.2) from the pole a t  
a = k coshP(y = k sinhp) is a Kelvin wave moving from right to left in the duct 
given by 

where, from (5.1), (4.6) and (4.8) 

A exp [ky sinh p- ikx  cosh p] = A exp [ - ( iwz -fy)/c], (5.3) 

isinhp 2ibkcosh (kbsinh@)L2,(kcoshP) 
A = - [  2 sinh (kb sinh p) 

sinh (kb sinh p)  K 
4- cosh2 i p  cosh (kb sinh p)  

If now we put b, = kb/rr and use the formulae given in Noble (1958) for 
L2,(kcoshp) andK2,(kcoshp)itfollowsfrom (2.8)and (5 .3 ) )  aftersomemanipula- 
tion, that for 0 < b, < i the reflexion coefficient R (the ratio of the amplitude 
of the reflected wave to that of the incident wave) is given by 

R = ] A  1 = cosh (nb, sinh p) exp { - nb, Gosh /3} 

x I 1 - i tanh +p tanh (nb, sinh /3) eZim 1, 

where 

and 
b, cosh p 
(n2 - b2,)t‘ 

tanY?, = 

We observe that in the absence of rotation ( p  = 0) this reduces to 

R=exp(-rrb,), 

which agrees with Noble’s result. 
In  order to show the dependence of R on the width of the channel we have 

plotted R against b, (0 < b, < +) for values of 1 corresponding to f/o = 0, 2, $, 
gJ3, 0-925, 0.99 and 0-999. 
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We note that the upturn in the graphs as b, approaches 4 is associated with 
the appearance of a second unattenuated reflected mode inside the channel as b, 
passes through this critical value and the graphs for the dominant mode in fact 
have a cusp at  this point. 

- 
0.1 - 

n w = o  999 

I I I I 

0 0.1 0.2 0.3 0.4 I 5 

b1 

FIGURE 1. The reflexion coefficient R as a function of bl 
forf/w = 0, g, $, + 4 3 ,  0.925, 0.99 and 0.999. 

We also note that for a given wave frequency and depth of water b is propor- 
tional t o  b,coah,h, so that, although for fixed b, the reflexion coefficient R 
decreases as p increases, for a given channel, R increases with increasing angular 
velocity. 

The value f / w  = 443 corresponds approximately to the semi-diurnal tide M, 
at the entrance to  the North Sea. With this value of f l w  the appropriate value of 
b, for the northern portion of the North Sea (with b = 200km, h = l00m) is 
approximately 0.145, and the corresponding value of R is approximately 0-42. 
Since the amplitude of the tide on the Norwegian coast is of the order of 30 cm 
the theory predicts a reflected wave whose amplitude is of the order of 12 cm. 
Considerably large amplitudes may, however, be obtained when the tide is 
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augmented by a surge out of the North Sea due to a depression over the northern 
approaches and the reflected wave may then be significant. 

For the Flemish Bight the appropriate value of b, (with b = 50 km, h = 30 m) 
is approximately 0-07 and the corresponding value of R is approximately 0.58. 
Since the amplitude of the tide on the Dutch coast is of the order of 80cm we 
expect a reflected wave of the order of 46cm down the Norfolk coast. This is 
about half the observed tide and the observed values are obtained if about 
30% of the East coast tide is transmitted around the Norfolk coast and 
the remainder is transmitted directly to the Flemish coast as in Taylor's (1920) 
model. 

I am indebted to Mr T. Fuller for his invaluable help with the numerical com- 
putations. 
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